AVHRR data processing for near real time applications
نویسندگان
چکیده
Polar orbiting satellites with low spatial resolution sensors, such as the AVHRR, provide repeated global coverage of the Earth. The data is directly transmitted to ground stations, and in some cases distributed immediately after the data acquisition. Near real time applications can be implemented if the adequate processing tools are available. This paper presents a near real time processing system, developed for NOAA/AVHRR data acquired from the Dundee satellite station. The system performs image calibration, geometric corrections and atmospheric corrections with minimum operator intervention. The geometric corrections consist of an orbital-based correction refined by the automatic identification of Ground Control Points (GCPs) by image matching. The atmospheric correction is based on simulations performed on the 6S radiative transfer code using a set of typical and expected values for the most significant parameters. An attempt to evaluate the error associated with the simplified atmospheric correction method was carried out. As an illustration, 3 AVHRR images from NOAA 16 were processed. The ranges of values encountered for the most relevant parameters were analysed. The range and average values for the reflectance channels 1 and 2 with and without the atmospheric correction are compared. These were used to produce standard Normalized Difference Vegetation Index (NDVI) images and atmospheric corrected NDVI images.
منابع مشابه
In-flight interband calibration on AVHRR data by a cloud-viewing technique
A significant degradation in the responsivity of the AVHRR radiometers aboard the NOAA satellite series, affects the index vegetation (NDVI), which is an important source of information for monitoring vegetation conditions on regional and global scales. Many studies have been carried out which use the viewing Earth calibration approach in order to provide accurate calibration correction coeffic...
متن کاملTesting near real-time detection of contaminated pixels in AVHRR composites
When using composite optical satellite images for land studies, an accurate and sensitive method is needed to detect pixels contaminated by unwanted atmospheric and surface effects. In this paper, we have examined the feasibility of using an algorithm previously developed for postseason analysis but in a forward mode, i.e. for identifying contaminated pixels in currentseason data. The CECANT ...
متن کاملReal-time Prediction and Synchronization of Business Process Instances using Data and Control Perspective
Nowadays, in a competitive and dynamic environment of businesses, organizations need to moni-tor, analyze and improve business processes with the use of Business Process Management Systems(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-lenges of this area of research that has attracted lots of researchers. In this paper, we present a...
متن کاملآشکارسازی سیگنال بر اساس پردازش موازی مبتنی بر جیپییو در شبکههای حسگری صوتی دارای زیرساخت
Nowadays, several infrastructure-based low-frequency acoustical sensor networks are employed in different applications to monitor the activity of diverse natural and man-made phenomena, such as avalanches, earthquakes, volcanic eruptions, severe storms, super-sonic aircraft flights, etc. Two signal detection methods are usually implemented in these networks for the purpose of event occurrence i...
متن کاملطراحی و پیادهسازی سامانۀ بیدرنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی
An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...
متن کامل